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Measuring and characterizing spatial
patterns, dynamics and chaos in spatially
extended dynamical systems and ecologiest

By D. A. RAND

Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick,
Coventry CV4 TAL, U.K.
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In this paper I discuss space-time chaos in both locally mixing continuum sys-
tems (reaction-diffusion equations, coupled map lattices and functional maps)
and individual-based models (probabilistic cellular automata and artificial ecolo-
gies). I particularly emphasize quantification and data-analysis and attempt to
address the characterization of spatial structure and dynamics in such disordered
systems. I discuss the relevance of these ideas to ecology, evolution and epidemi-
ology. The artificial ecologies I consider motivate a new definition of space-time
chaos for such systems and new data analysis techniques.
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In this paper I want to address a number of basic issues about the dynamics of
spatially extended systems which are disordered in time or space. I am particu-
larly interested in the characterization of spatial structure and its dynamics and
how to quantify and measure this. In particular, I want to discuss the relevance of
these ideas to fields such as ecology, evolution and epidemiology. These are areas
where virtually all the real systems are spatially extended but where very few of
the models take this into account. There are important practical implications for
data collection and analysis.

Ecological models to study spatial effects fall into two broad categories. In the
first, one assumes local mixing in space and models this using either a reaction-
diffusion equation (Okubo 1980; Murray 1990), or a coupled map lattice (Hassell
et al. 1991). Those ‘patch’ models which assume a large number of patches,
homogeneous mixing within a patch and dispersal between patches (Hassell 1978;
Reeve 1990; Hastings 1990; Levin et al. 1993) also fall into this class.

The other category of models are those which are individual-based. In these
one models the stochastic behaviour of individuals which are distributed in space.
Dynamics and competition are built into the model through the use of simple
transition rules which only depend upon the local configuration. One is interested
in the way in which the spatial dynamics are integrated to produce community
behaviour. There are now a number of interesting applications of such systems to
ecology and epidemiology. These include contact processes and spatial epidemics
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(Durrett 1993), host—parasitoid and host—pathogen dynamics (Comins et al. 1993;
Rand et al. 1994a), ecological systems (Durrett & Levin 1994; DeRoos et al. 1991;
Rand & Wilson 1994a) and game theory (Durrett & Levin 1993; Nowak & May
1992).

I want to discuss both these classes in this paper. I start by very briefly dis-
cussing some illustrative examples of continuum systems drawn from (i) mathe-
matics and physics and (ii) ecology and epidemiology. Then I discuss some basic
theory of disordered continuum systems and give a brief introduction to recent
results on spatio-temporal chaos. Finally in this section, I consider some question
of quantification and data analysis for these systems.

Then I move on to individual-based systems. After discussing some ecological
examples and related general theory, I consider some new ideas about the data
analysis of such systems. I describe a new method for identifying spatial scales. I
outline a method (Rand & Wilson 1994a) for immense data compression in such
systems and discuss its application to detecting structural change in ecosystems.
I apply this approach to a resource-predator—prey system and a spatial model of
succession in a forest community.

These examples motivate a new definition of space-time chaos for such individual-
based systems. This is given in §3e.

In the discussion I will consider several basic questions of general applicability.
A basic problem is to understand when such spatially extended systems admit a
good description in terms of low-dimensional dynamics. How can we understand,
describe and characterize the spatio-temporal behaviour of systems for which this
low-dimensional description does not hold? How should we characterize spatial
order and disorder? What is the nature of (a) the continuum limit (see §2b (ii))
and (b) the thermodynamic limit (see §2b (iii)) in such systems? How do we deal
with the immense amounts of data in the states of these models and maximize the
information gained from this data? Are there general techniques for identifying
appropriate spatial and temporal scales?
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2. Locally mixing continuum systems

In this half of the paper I will be concerned with systems which are modelled
either by reaction-diffusion equations, functional maps or coupled map lattices.
Reaction-diffusion equations have the following general form: 8;u = DV2u+X (u).
Here u = u(z,t) € R™ or C™ and the diffusion matrix D may be complex. An
example is the complex Ginzburg-Landau (CGL) equation below.

p—d
< Coupled map lattices (CMLs) are defined as follows. Let A be Z¥ or a finite
> E rectangle in Z¥. The state u = (u;),ea associates to each point z in A an element
2 L u, of a vector space V. The simplest CMLs are mappings ® of the form

|
=1 ®: (u)een o (X slly—a)f(a,) .

W

Here f is a mapping from V to V and the interaction s. satisfies (i) s.(n) is
exponentially small in |n|, (ii) s.(n) < € for all n # 0 and (iii) 5.(0) € [1 —¢,1]. A
much studied example is that for nearest-neighbour coupling where s.(0) = 1—¢,
s.(1) = ¢/N (where N is the number of immediate neighbours) and s.(n) = 0
for all other n. A cML ¢ = &, = A, o L is a composition of two maps where the
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Measuring and characterizing spatial patterns, dynamics and chaos 499
Table 1. Some examples of the CMLs, functional maps and PDEs used to illustrate the
theoretical discussion

(They are (i) coupled logistic maps, (ii) the complex Ginzburg-Landau (CGL) equation, (iii)
the CGL map, (iv) the resource-predator—prey system and (v) the host-parasitoid system.)

local (reaction) dynamics L coupling Ay
z€[0,1] 2’ = dax(l —z) z =z + gVi(z):
u:refd’ eC . Ou = eu+ (1 +ic1)V3u — (1 — ico)|ul*u
u=re? € C f(re?) = \/(;1,1"2/()\;1, + (1 =) 1+ 7n(l+ig)a/MM
x exp(¢ — Tar?) ~ exp(ro(1 +iB)A)
prey v v =v(l+b1) vi =v; + g, V2 (v)i
x exp(—ap/r — c1p/(1 + h1v))
predator p p' = p(1 — d) exp(czv) pz =pi+ ypV (p)i
resource 7 v’ =7(1+ bs)exp(—r/k — c3p) L =1 + g-V2(1);
host h B’ = Ahe™? R; = hi + gnV(R);
parasite p P =qh(1—e7?) pi = pi + g,V (p):

local map is L((uz)) = (f(u,)) and A, is the interaction or coupling map defined
by s.. For the nearest neighbour example above

A (u)y = Uy +eV3(u),

where

vz(u)z = Z (uy — uz).
nbrs y of x

Weak coupling means € = 0.

The natural phase space for a CML is usually an open subset £>°(E) of the £>°-
space £=(V'). Here £>°(V) is the Banach space of all u = (u,) such that u, € V'
for all z and ||u|| = sup, ||u.|| < co. And £°°(E) = {u:u, € E for all z}.

Functional maps are similarly defined but in this case z is continuous and
ranges over a rectangle in R”. For the interaction A, we take standard smoothing
operators such as exp(eA), truncations of this or operators defined by related
kernels. For example, the CGL map (see table 1) gives a functional map with
closely analogous behaviour to the CGL equation in one and two dimensions
(Bohr et al. 1989, 1990a, b).

In general we use CMLs to probe the thermodynamic limit and functional maps
to probe the continuum limit.

(a) Some illustrative examples

For my theoretical discussion I want to refer to the following examples. The
mathematical formula for each example is given in table 1.

(i) Mathematical and physical examples

Because of limitations of space, for the mathematical and physical examples I
just refer the reader to the indicated sample references. Further references can be
found in these.

Phil. Trans. R. Soc. Lond. A (1994)
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500 D. A. Rand

Figure 1. A typical space-time plot of the prey in the one-dimensional resource-predator—prey
system. It shows how the bursts of prey nucleate and convect across the system.

1. Coupled logistic maps. Kaneko 1991.

2. Hyperbolic CMLs. Bunimovich & Sinai 1988, Pesin & Sinai 1991, Gundlach
& Rand 1993a—-d, Campbell & Rand 1994a—c.

3. The complex Ginzburg—Landau (CGL) equation and map. Schraiman et al.
1992, Chaté 1994, Bohr et al. 1989, 1990a, b, Aranson et al. 1991a,b, Weber et
al. 1992.

(ii) Biological examples

4. A resource—predator—prey system. The local dynamics for this system are
chaotic (Rand et al. 1994b).

The corresponding diffusively coupled ¢ML displays space-time intermittency.
The background state has zero prey and plentiful resource. From this state one
gets random nucleation of prey outbreaks followed by predators waves. These
structures then propagate with a characteristic velocity across the ecology. This
is shown in the space-time plot in figure 1. We discuss quantifiers of this state
below (e.g. in §2c¢).

5. Host-parasitoid system (Comins et al. 1992). The local dynamics for this in-
volve diverging Lotka—Volterra cycles which always lead to extinction. However,
in large two-dimensional systems they can survive for a very long time and there
are attractors with infinite lives. In not too small one-dimensional systems, by
initially adding a very small random number of parasites at the boundaries one
can put the system into an attractor which for infinitely long times has a rel-
atively large minimum population size. The states in this model are space-time
intermittent rather than fully developed space-time chaotic. They are similar to
those in the resource—predator—prey system above. The background state is that
where both parasite and host is absent. From this one gets nucleation of bursts
of infection that are then convected across the system.

Phil. Trans. R. Soc. Lond. A (1994)
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(b) Mathematical theory
(i) Basic length scales: dissipation, excitation and correlation length scales

Let us suppose that our system is defined over a region of v-dimensional phys-
ical space represented by a rectangle of length L. We shall be particularly inter-
ested in the behaviour of our systems as the volume V' = L” of the system is
increased.

Since all the systems we consider are dissipative, there is a length scale £p
below which all modes are damped. This is the dissipation length. For typical low-
dimensional systems £p ~ L and there are only a few excited modes. However,
in large systems £p < L and this would appear to be the case in many ecological
and epidemiological situations. This scale is very important for data analysis. In
general one expects that it is not necessary to resolve the spatial structure at
scales well below £p. I discuss the mathematical meaning of £ in §2b (ii) below.

Consider the correlation Cy;(7,7) = ((uwi(z,t) — @;)(uj(x +7r,t +7) —q;)) where
the averaging (-) is over both space z and time ¢. In many spatio-temporal chaotic
systems C;; ~ exp(—r/& —7/7). This defines the spatial correlation length {c = &
and the temporal correlation time .

(ii) The continuum limit and the dissipation length

We consider systems with a finite spatial domain. Suppose that the phase space
of our dynamical system is a Hilbert space H . For some systems such as the CGL
equation it can be proved (Doering et al. 1988) that on the attractor A there is
a cone condition of the form ||Q,u|| < ||P,u|| where P,u is the projection of
u € H onto the space Hg, spanned by the first n generalized Fourier modes and
@, = 1— P, is the complementary projection onto Hs,. It follows from this that
if A’ = P,(A) then there is a Lipshitz map a : A’ C Hg,, — H., such that every
u € A is of the form u = v’ 4 a(v’) for v’ = P,(u) € A’. In other words, the high
modes a(u') are slaved to the low modes u'.

If this holds, we can identify the dissipation length ¢p as the longest wavelength
A of the modes in H,,.

When there is slaving on the attractor, it is natural to ask if there is a finite-
dimensional dynamical system that mirrors the non-transient behaviour of the
full system. Thus the problem becomes one of extending the slaving function a to
some sort of open set U in the space of low Fourier modes Hc,. This can be done
if we can extend the cone condition. In this case, standard invariant manifold
techniques can be used to prove the existence of an inertial manifold which is the
graph of a mapping a : U C Hg,, — H-,,.

For a wider class of systems, such as two-dimensional Navier—Stokes, one can
prove that attractors are finite-dimensional. This can be done when one can show
that near to the attractor small round balls in phase space are transformed by
the dynamics into ‘pancakes’ which are very thin in all but m dimensions. When
this holds one can define £p in a similar way to that described above.

(iii) The thermodynamic limit and extensive chaos

I would like to start this section by proposing a definition of space-time chaos
for such continuum systems. (I give the corresponding definition for individual-
based systems in §3e.) For this definition it is important to keep in mind that
we are interested in large systems. Mathematically we are interested in the large

Phil. Trans. R. Soc. Lond. A (1994)
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proportion of positive exponents greater than A

0.12

Figure 2. An approximation of the Lyapunov density for the host—parasitoid system with
parameters A = 2, ¢ = 1 and gn = gp = 0.25. The graphs are for L = 32, L = 64 and L = 128.

volume limit V' — oo. Thus I consider the systems of interest to be parametrized
by V or equivalently by the length of the system L.

Definition. A system is space-time chaotic if (i) it has a thermodynamic limit
at V = oo; and (ii) the number of positive Lyapunov characteristic exponents is
o(V).

All the example systems of §2a contain régimes that satisfy this definition.
It should be noted that the notion of space-time chaos described here can be
further subdivided. For example, in the CGL equation one finds régimes of space-
time intermittency and amplitude turbulence, and both of these can satisfy our
definition. I discuss these distinctions below.

Let me discuss (ii) first. Of course, the main characteristics of low-dimensional
chaos are the existence of an attractor and at least one positive Lyapunov char-
acteristic exponent (LCE) for this attractor. In a spatially extended system we
expect that the number of active degrees of freedom grows roughly linearly in the
system’s volume V. For a system that is both chaotic in space and time we also
expect that a roughly constant proportion of these will correspond to unstable
modes with a positive exponent. Thus we want the condition (ii).

In many systems a stronger condition holds: there is a limiting Lyapunov den-
sity A(x) = limy_,0 Av(X). Here Ay (x) is the ratio of the number of exponents
which are > x to the number of the positive exponents for the system of volume
V. An example of such a Lyapunov density is shown in figure 2 where I draw
approximations to that for the host—parasitoid model. All our examples have a
Lyapunov density in the appropriate régimes.

We note now that if (ii) holds then it defines a new length scale £;, by the rela-
tion: number of positive exponents ~ (L/¢;)". The density of positive character-
istic exponents is £;". Since the Lyapunov dimension is determined by the Lya-
punov exponents, from the Lyapunov spectrum on can determine a density £}
for the Lyapunov dimension via the relation: Lyapunov dimension of attractor ~

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

A

P

L
[ \ \\

A

a
L\
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Measuring and characterizing spatial patterns, dynamics and chaos 503

(L/£1p)". For the logistic system with the coupling g = 0.3 this is approximately
0.67.

The thermodynamic limit. Now I want to turn to the question of what is the
thermodynamic limit for such systems. I will discuss this for coupled map lattices,
but it will be clear to the reader how to generalize this to other systems. Consider
a CML @ : {*°(E) — £°°(E). This is the infinite volume system and has associated
with it the finite volume systems ®y .

We say that ® has a thermodynamic limit if it satisfies the following require-
ments:

(i) @ has an attracting invariant set A with open basin B = B(A) in £*°(E).
This restriction on the basin can be relaxed somewhat.

(ii) For typical initial conditions u(-) in B the spatio-temporal statistics are
described by a single spatio-temporal ergodic natural measure y on A.

(iii) If py is the corresponding natural measure for the system of finite volume
V, then uy — p as V — oo and the number of positive LCE of uy is O(V).

Here typical has the following meaning: Let 7y : ¢*°(E) — (¥ (FE) be the
projection onto the corresponding V sites. Typical means that u(-) € By where
By is a subset of B such that 7y (By) has full Lebesgue measure in 7y (B) for all
V. Space-time ergodic means that for all continuous v : £*(E) — R

(0(S*(1)))e = (v(B(u)), = / vdp,

where S” is the spatial translation: (S%u)(y) = u(z + y).

It is proved in Bunimovich & Sinai (1988), Pesin & Sinai (1991), Gundlach
& Rand (1993a-d) and Campbell & Rand (1994a,b) that weakly coupled map
lattices with hyperbolic local dynamics have a thermodynamics limit.

(iv) Eztensive chaos

Recall the definition of the exponent length ¢; and the density for Lyapunov
dimension. Analogously, we can define the following related length scales:

{p: fractal dimension of A ~ (L/¢p)” as L — oo;

4 order g Renyi entropy of A ~ (L/lg,)" as L — oo.

When these quantities and the length scales £; and ¢;p for the Lyapunov ex-
ponents and Lyapunov dimension are well defined and finite we say the we have
extensive chaos. Then, in the language of physics, each of the classical dynamical
quantities (fractal dimension, Lyapunov dimension, order ¢ Renyi entropy and
number of positive LCES) is extensive.

It should be noted that these various lengths £ are independent of the corre-
lation length ¢.. For example, there are examples of one and two-dimensional
systems (L. A. Bunimovich, personal communication; Miller & Huse 1993) where
¢c — oo as the coupling is increased to some finite critical value while £;, remains
finite.

It should not be too difficult to use the results of Campbell & Rand (1994a—c)
to show that weakly coupled map lattices with hyperbolic local dynamics have
extensive chaos. All the examples of § 2 a are extensive in the appropriate régimes.

Phil. Trans. R. Soc. Lond. A (1994)
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(¢) Space-time intermittency

Space-time intermittency is characterized by a competition between two states.
The first state, the ‘laminar’ or background state acts as an absorbing state and
typically, but not necessarily, is linearly stable. The ‘turbulent’ active state is
usually made up of localized objects. These carry the disorder. They erupt from
the background state in a chaotic fashion. However, note that it is not necessary
for the background state to be truly laminar or for the active state to be chaotic.

In the one-dimensional CGL equations the localized objects are ‘holes’. In the
resource—predator—prey system they are prey-predator booms which also corre-
spond to holes in the resource. In the host—parasitoid system they are localized
lump-like parasite outbreaks. In this system it can be shown (M. Keeling 1994,
personal communication) that if the host and parasite are both low then the sys-
tem will become extinct. This state (both populations low) is therefore the stable
absorbing state. In the one-dimensional system most initial conditions will give
you just this state and the populations go extinct. However, you can excite the
active state by tickling the system with some very small localized random noise.
It is easily excited and once active stays present even when the noise is turned
off.

In this régime these localized nucleating objects which carry the disorder are
the building blocks for a statistical theory. For example, two interesting quantities
are the distributions P(¢) and P(7) of the sizes £ and lifetimes 7 of the laminar
regions separating the localized objects (Chaté & Manneville 1988). It is expected
that in the intermittent régime these will be exponential, i.e. P(§) ~ exp(—£/41)
and P(7) ~ exp(—7/¢;) and this then defines spatial and temporal coherence
lengths ¢; and £5. The length distribution for the host—parasitoid system is shown
in figure 3. In this case £; ~ 5.4 and £, ~ 2.33. Note that £;' corresponds to a
spatial entropy since we are using a symbolic coding into laminar and turbulent
states. Then, assuming that the localized objects do not vary too much, ¢;' and
¢;! are related to the spatial and temporal KS-entropies of this system.

(d) Stabilization of chaotic repellers

Consider the coupled logistic map example of §2a and suppose that the pa-
rameter of the logistic map is chosen so that the uncoupled logistic maps have
a stable 3-cycle. Then the coupled system has an attractor which is the homo-
geneous state corresponding to this 3-cycle. However, if the system is reasonably
large and started from random initial conditions then this attractor is never seen.
For the individual maps there is a horseshoe repeller around the 3-cycle and there
is a corresponding horseshoe in the coupled system (at least for weak coupling
(Campbell & Rand 1994a)). The states get tangled up in this repeller and the
escape time for this grows exponentially or faster with the system size. Thus, for
large V, the repeller acts effectively as an attractor while for the infinite system
it is an attractor.

This is a very common phenomenon in a wide range of systems. Moreover,
there are examples, where these escape times become infinite at finite system
sizes. An example for the CGL map is given in Bohr et al. (1989, 1990a, b).

(€) Reconstruction of attractors for spatially extended systems

Recall the various embedding theorem for a time-series coming from a low-
dimensional dynamical system (Takens 1980). Clearly, it is not sensible to at-

Phil. Trans. R. Soc. Lond. A (1994)
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102 }

104 F

proportion of occurrences

10_6 1 1 1 1
0 40 80

length of laminar region

Figure 3. The distribution P(£) of the sizes £ of the laminar regions separating the localized
objects in the host—parasitoid system with parameters A =2, ¢ =1 and gn = gp = 0.25.

tempt reconstruction for large spatially extended systems using a single scalar
observable. However, it has been shown that this does give rise to a practicable
method when the observable is a spatially extended field (Rand & Wilson 1994b).
For example in the resource-predator—prey system of §2 a for the observable one
can take the spatially extended state of just one of the species and reconstruct
the other two from this. If the coupling is strong one can even only monitor the
observed state on a sublattice provided that it is well-distributed. This result
is of interest for ecology since it offers the possibility of monitoring observable
species using remote sensing and then reconstructing the invisible species from
the spatially extended time-series of some observable species.

3. Individual-based systems: artificial ecologies

I now discuss some non-equilibrium individual-based systems. I will concentrate
on questions concerned with the data analysis of spatial and temporal patterns in
non-equilibrium systems. The main ideas are taken from Rand & Wilson (1994a).

Artificial ecologies (AEs) are a slight generalization of probabilistic cellular
automata (PCAs). Physical space is represented by a two-dimensional L x L lattice
2 of sites. Each site x can be in any one of a number of discrete states sy, ..., 3q4.
Therefore, the state of the system is given by a configuration S = {S;}.cq. The
state S(t) at time ¢ determines a probability distribution on the potential future
states in the following way.

In a PCA each site is updated independently. This is not appropriate for many
ecological applications because an event at one site can determine a specific
change at another neighbouring site. Thus, in an AE the state of each neighbour-
hood determines a probability distribution on a finite set of admissible events.
This set is called the event set. Each of these events is a transformation of the
state on the neighbourhood.

Phil. Trans. R. Soc. Lond. A (1994)
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There are two possibilities for the updating:

Synchronous updating where the state of each neighbourhood determines a
probability distribution on the event set. Thus the state S(t) at time ¢ determines
a probability distribution of the states at time ¢ + 1. The whole configuration is
then updated synchronously.

Asynchronous updating where the state of each neighbourhood determines the
rates at which the various events in the event set occur in the neighbourhood.
If event 7 has rate r; in a neighbourhood then the probability of it occuring
in [t,t + h] is 7;h + o(h) where o(h)/h — 0 as h — 0. Once it occurs, the
neighbourhood’s state may change leading to a change in the rates r; associated
with the neighbourhood.

Note the difference between PCAs and AEs. Wheras in a PCA all events only
change the central site, in an AE other sites in the neighbourhood can be changed.

The examples I discuss here are synchronously updated. It appears that for the
particular systems I am discussing this does not matter and the corresponding
asynchronously updated systems have similar spatial and temporal statistical
properties. However, this is not always the case and there are systems where the
synchronously and asynchronously updated versions have very different behaviour
(Huberman & Glance 1993).

(a) Two basic examples

In this paper I will consider two examples: a resource—predator—prey system
(Rand & Wilson 1994a) and a model for the Middle-European beech forest cy-
cle (Wissell 1991). These examples are chosen for their intermediate-scale non-
equilibrium dynamics.

(i) Resource—predator—-prey model

Each site can be in one of five states; resource, predator, predator in a resource,
prey or empty. A predator in a resource is effectively both and its evolution can
be described by what happens to each separately. Hence we will ignore this as a
separate state. The boundary conditions are periodic.

Because of limitations of space we do not give the precise rules or parameter
values here. They can be found in Rand & Wilson (1994a). However, we note
that they are chosen to implement the following intuitive rules. (a) A resource
site can grow into any adjacent empty site with a given probability g. (b) A prey
will move into and eat an adjacent resource site. (¢) If there is no resource in
adjacent sites a prey will move randomly into one of its adjacent sites. (d) There
is a certain probability of a prey giving birth py, into an adjacent empty site.
This probability is zero if a prey individual has not eaten for a certain amount
of time. (e) A prey will die with probability one if it has not eaten for a certain
amount of time. (f) For the predators there are similar rules to the prey for
giving birth and dying. (g) If there are no neighbouring prey then a predator has
a hunting ability in that it can sense prey further away than it can actually move.
If it does then it can move one step in that direction.

A typical spatial state for this model is shown in figure 4. Note the spatial
heterogeneity. For these parameter values there is a majority of resource. For
different parameter values this can change to be a minority. To obtain this spatial
state and in the example used in the following discussion we use the parameter
values as given in Rand & Wilson (1994a).
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Figure 4. A typical spatial configuration of the resource—predator—prey AE for the given param-
eter values. The lattice size shown is 300x300. The colour-coding is as follows: lightest grey,
empty; medium grey, prey; black, predator.

(ii) Wissel’s Middle European beech forest cycle

This attempts to model the spatial patterns associated with the natural cycles
in the Middle European beech forest (Wissell 1991). The rules for this are given
in figure 5 and a typical spatial state is shown in figure 6. All my comments on
this model are taken from Hendry & McGlade (1994).

(b) Dynamics and attractors

These AEs determine a Markov process on the space of configurations S. Asso-
ciated with this is the following transition operator L which acts on probability
measures p, on configuration space:

paldS,) = [ pu-s(dS, ) P(dS,1S, 1), (3.1)

where P(dS,|S,_1) is the conditional probability of the configuration S,, given
that the previous one was S, ;. There is a lot of interest in the limiting be-
haviour of p, as n — oco. However, this concerns the large-scale behaviour of the
system and, as we will see, we will be considering how to extract information
from the intermediate scales as well. In our case the latter information will be
more interesting.

Note that for some finite systems the resulting attractor is trivial and consists
of an absorbing state 0. However, the expected time for absorbtion is often very
large (typically O(e)) and the system has approached a ‘statistical stationary
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—— —— —  probabilistic death due to accidents or disturbances
Figure 5. The rules for the beech forest mosaic cycle system. The transition around the normal
cycle occur at the rates shown in units of a decade. There is an accelerated transition to birch tree
or mixed forest if a neighbour is of this type. Exposed trees can die from radiation exposure to
East, South or West if it is not protected by a neighbour. The probabilities for these transitions
are pg, ps and pw. Old trees can also die from accidents or disturbances. This occurs with
probability pp.
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Figure 6. A typical spatial configuration of the beech forest cycle system. The lattice size is
150 x 150. The colour-coding is as follows: white, opening; lightest grey, birch; light grey, mixed
forest; dark greys, beech (with darker shades representing older trees).
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state’ long before absorbtion destroys it. If this is the case, then one should modify
the above approach to be conditioned on the fact that the absorbing state is not
reached. In the following discussion we ignore these complications.

The first point to note is that both the above models appear to have attractors
onto which they settle once transients have died away. By an attractor I mean a
subset A of configuration space with the following properties:

Attractiveness: With probability one, as ¢ — o0,S; — A. For finite systems
this means that S; € A for ¢ large.

Invariance: Once the system is on the attractor it almost surely doesn’t leave
it, i.e. if S; € A then Sy € A, for all ¢/ > ¢.

Ergodicity: If ¢ and j are two states in A then for some n > 1 there is a positive
probability of state changing from ¢ to j in n steps.

Moreover, we expect that these attractors are small in the sense that the frac-
tion of states p which are in them is small. Analytical arguments and simulation
leads us to believe that p < exp —cL? for some constant ¢ > 0. This observation is
related to the fact that relatively small subpatterns of the state have interactions
that are exponentially small in their mutual separation in space.

(c) Characterizing the spatial structure associated with the attractor

An important tool for characterizing the patterns in such systems is given
by the pattern measures. These describe the spatial structure statistically. They
determine the probabilities P(S,, = i1,...,S5z, = %) of patterns when the state
is § = (S,).

A remarkable observation is that for this system and for the states on the
attractor, on intermediate length scales, these pattern measures vary within some
low-dimensional set. Thus suggests that in principle it is possible to achieve a
large amount of data-compression by using this low-dimensional parametrization.
After discussing spatial scales we return to describe a remarkably effective data-
compression technique which depends upon the near-determinism of the system
at intermediate length scales.

We now use these ideas to address several questions. In particular, I want to
consider how to (a) characterize spatial structure, (b) quantify the dynamics,
(c) deal with the immense amounts of data in the states of these models, (d)
identify appropriate spatial and temporal scales, (e) maximize the information
gained from this data and (f) use these ideas to detect change in ecosystems.
To facilitate this, I will describe a correspondence between the set of pattern
measures in the attractor and a set of low-dimensional vectors.

A crucial idea of our analysis is to look for spatial scales where the ratio of ‘de-
terministic’ information to stochastic fluctuations is maximized. Another, slightly
different, way of saying this is that we search for a length scale which maximizes
non-trivial determinism.

(d) Window time-series

To understand this we consider the time series z(t) = zy(t) obtained by count-
ing the total number of one of the species (say the resource) inside a fixed window
of size V = ¢ x £. If the window is too small then the time-series is dominated by
stochastic effects. If it is too large the interesting effects are averaged out and all
we observe is small stochastic fluctuations about a constant mean value.

However, in each of our systems there is a clearly defined intermediate length
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scale {5 on which to observe the dynamics which gives us the maximum amount
of information about the system and its dynamics relative to the amount of data
and work necessary to describe it. This scale is an inherent characteristic of the
ecosystem and is also the appropriate scale of measurement. Roughly speaking it
is characterized by the following properties: (i) non-overlapping ¢s-windows are
nearly independent, and (ii) the dynamics of any two points in an {s-window are
significantly correlated. This raises the question of whether there is a systematic
method for finding this scale. We discuss one which uses the time-series.
Consider an V-window Wy where £ = /V is large compared to any correlation
length. Divide this into m = V/V5 Vs-windows. Then the time-series for Wy, is
the sum of the time series for the ¢s-windows. Let Var(V') denote the variance of
the time-series in a /-window. Then (Rand & Wilson 1994a) we expect that if Vs

is large enough Var(V)/V = Var(Vs)/Vs + Co + C1V, (3.2)

where Cy + V' C; is a small error term due to the correlations between windows
due to the fact that the time-series are finite and are all acting out dynamics
on the same attractor. As the length T of the time series is increased C; — 0.
If Var(V))/V is plotted for our resource-predator—prey model then one clearly
sees the crossover from small-scale behaviour to the scaling behaviour given by
equation (3.2). This is shown in Rand & Wilson (1994a). It occurs around V =
10000. Therefore, we take 5 = 100.

(e) Determinism and dimension

Let z(t) be the time-series from a Vs-window. If this is plotted it appears
smooth. Therefore, it is natural to ask whether the population dynamics are
deterministic. By this I mean that there is some time-independent functional
relationship of the form

z(t) = fle(t —dr),z(t — (d—1)7),...,z(t — 7)) + &t — 1), (3.3)

where £(t) represents a very small stochastic fluctuation whose magnitude is so
small that £(¢t) < z(t) and is below the scale at which f is linear. This last
condition is very important because when it holds there are practical techniques
to detect determinism. In stable equilibrium, periodic or quasi-periodic systems
the noise will be stabilized by the local linear contraction and in chaotic systems
the Lyapunov exponents can be probed. The techniques of Wilson & Rand (1993)
provide a tool for checking for this separation of scales, i.e. that the stochastic
scale is smaller than the nonlinearity scale.

For our models we verify (3.3) by using singular value decomposition (SVD)
techniques (Bertero & Pike 1982) and direct inspection of the data. For the
former, it would be natural to use a version of this that is local in phase space,
but it turns out that for this example it suffices to use global techniques.

Firstly, form the time-delayed vectors

z(t) = (x(t —dr),z(t — (d— 1)7),...,z(t — 7)).

The first piece of evidence comes from the low dimension of the resulting vector
time-series. Using SvD techniques we search for an orthogonal basis of R? with
the following property: Let e,, . .., €4 be any orthogonal basis e of R? and consider

the ‘error’: [T )
el D) =17 [ llztt) - y, Ol e
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of the projection y, (t) = Zf 1{z(t), e;)e; onto the subspace spanned by e, ..., e.
Define
-1 [t

Then ex(z,T) = 35, 0i(e ) We seek a basis e that minimizes the error 3°,-, 0i(e)
for all k. If the dynamlcs of z is ergodic then we can also expect that the basis
found in this way will be largely independent of the vector time-series z(t). This
basis can be found using the svD techniques described in Rand & Wilson (1994a).
The important point is that all but 6% of the variation is in the projection
zP™ =y ontoes,...,eq (i€ St 0i(e)/ 2, gi(e) > 0.94). Thus, even globally
in phase space, our system is largely four-dimensional and we can project the
time-series onto the first four eigenvectors to reconstruct the time-series minus
most of the noise. This means that virtually all the dynamics in the original signal
are occurring in a four-dimensional embedded space. Such a result is a strong
indicator of determinism. It is also surprising considering the high-dimensionality
of the original spatial system.

We can now perform an extra direct test of determinism. Choosing some state
at time ¢, z(t), we find a previous state, z(t —t'), very close to our original state.
We check that, as in a deterministic system, the evolution of these two states will
be very similar. We can also perform this test on the projections zP™J(¢) of these
vectors onto eq,...e4.

In our case the deterministic part of the population dynamics are chaotic. This
means that nearby states diverge from each other exponentially fast at a rate
determined by the largest Lyapunov exponent. We check that this is the case
(Rand & Wilson 1994a).

The fact that the time-series are chaotic is of some general interest because
there has long been a controversy about whether ot not cellular automata could
be chaotic. Here is an example of an AE which is chaotic on time-series in Vs-
windows and which we therefore expect has a Lyapunov density in the sense given
above. Thus I would like to suggest the following definition of space-time chaos
for PCAs and AEs.

Definition. A PCA or AE is space-time chaotic if it has an attractor satisfying
the properties of §3b and an invariant stationary measure p (where p, — p as
n — oo whenever p,, is as in equation (3.1)) and for p-typical realizations (i) there
is a volume Vg such that the Vg-window time-series are deterministic in the sense
of equation (3.3) with the appropriate separation of stochastic and nonlinear
scales and (ii) there are positive Lyapunov characteristic exponents associated
with the Vs-window and the values of these exponents have a dependence upon
the realizations of the dynamics in far-away windows which is exponentially weak
in their separation distance.

(f) Application 1. Detecting structural change in ecosystems

I outline a technique to detect long-term structural change or drift in an ecosys-
tem (Rand & Wilson 1994a). This is an important problem in the management
of ecosystems because one wants to detect degradation of the ecosystem before
it’s too late. The point is to be able to distinguish between structural change, by
which we mean change in the parameters governing the dynamics, and the natural
dynamical variation of the ecosystem. The detection of change is also important in
the analysis of ecological data because nearly all data analysis techniques assume
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stationarity in the time series being analysed. Our method can detect drift of the
order of one part in a thousand per period (i.e. about 1076-107° per iteration).

Two different problems are of interest. In the first, we are given a continuous
time series from an ecology and wish to detect change occurring within it. In
the second we have two different time-series and we wish to identify if there is a
significant difference between the two. We only consider the second here. For the
first see Rand & Wilson (1994a).

The idea for both problems is to combine our data reduction techniques de-
scribed above with a technique introduced in Eckmann et al. (1987) for detecting
non-stationarity in data-sets. This uses recurrence plots. To address the second
problem, we count the recurrences within one of the time series and compare this
with cross-recurrences that occur between the two. We expect the latter to be
fewer and therefore check for a significant difference between the two.

Given the projection zP™I(t) = y,(t) introduced above of the time-delayed
vectors z(t) we look for pairs ¢, ¢’ with such that || P™J(¢t) — zP™)(t') ||< e. We
calculate the fraction N, wihin(s) of such pairs ¢, ¢ with [t' — | = s and where
zP™J(¢t) and 2P (t') are taken from just within the same time-series. For € small
these correspond to recurrences in the dynamics. We then compare this with the
fraction N, c0s5(s) of such pairs but where zP™(¢) and zP™J(¢') are taken from
different time-series.

For example if we change the parameter g that determines the rate at which
empty sites are colonised by the resource from 0.4 to 0.6, an inspection of the
phase space indicates that the attractor has only moved by a very small amount.
Moreover, inspection of the spatial patterns by eye reveals no obvious changes
in the spatio-temporal patterns. Nevertheless, there is a significant difference
between the internal recurrence plots and the cross-recurrence plot between the
differing time-series. These plots are shown in Rand et al. (1994a).

(9) Application 2. Reconstructing invisible species

In principle this approach to representing patterns can also be used to recon-
struct invisible species from the visible ones. I have in mind here a situation
where say the resource in our resource—predator—prey model could be monitored
but one could not see the predators and prey.

The determinism implies that our four-dimensional vector zP'®J(¢) determines
the pattern measure not only of the visible species but also of the other species.
One way to check this is to do the svD analysis on time-delayed vectors of the

form, (z(t —dr),...,z(t —7),y(t —dr),...,y(t — 7)),

where z is the visible species as discussed above and y is the invisible species.
If this has similar o) as for the single species then this suggests that the second
species is slaved to the first. Thus if we know the first then in principle we
can predict the second. This slaving appears to be present in the forest model
and should be present in the resource—predator—prey system if the window size
is increased so that the prey and predator numbers are not too small. Note,
however, that even if the species are slaved together, it will require a lot of work
to approximate the actual slaving function.

I am indebted to the work of my students. I am particularly indebted to Howard Wilson because
most of the work described in the second half of this paper is joint with him. Matthew Keeling
did the calculations of Lyapunov spectra and laminar state length distributions. Ruth Hendry
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provided the data from Wissell’s model. Much of my work on the structure of hyperbolic CMLs is
joint with Kevin Campbell. I also acknowledge some stimulating discussions on these topics with
Tomas Bohr. Part of this work was started at the Arbeitsgruppe Theoretische Okologie of the
Forschungszentrum Jiilich in 1989. I am extremely grateful for their hospitality and particularly
to its then director Jacqueline McGlade for her encouragement. I thank the UK Science and
Engineering Research Council and the Wolfson Foundation for their financial support.
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ter values. The lattice size shown is 300x300. The colour-coding is as follows: lightest grey,
mpty; medium grey, prey; black, predator.
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igure 6. A typical spatial configuration of the beech forest cycle system. The lattice size is
50 x 150. The colour-coding is as follows: white, opening; lightest grey, birch; light grey, mixed
irest; dark greys, beech (with darker shades representing older trees).
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